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A BRIEF NOTE ON IMPLEMENTING BOUNDARY CONDITIONS
AT A SOLID WALL USING THE FCT ALGORITHM

1. Introduction

Early implementation of the flux-corrected transport (FCT) algorithms in Navier-Stokes

codes has found that the boundary condition at a solid wall is susceptible to numerical

instability when the temporal variation of the density near a wall is not small [1, 2]. This can

occur in a simulation of an unsteady flow or in the initial stages of a steady-state simulation.

In their numerical simulation of shock bifurcation near the end wall of a shock tube, Weber

et al. [1] attributed the oscillations near the wall to the clipping of the density minimum by

the FCT flux limiter, which is activated at locations where minima and maxima are present.

They thus turned off the flux limiter in the immediate neighborhood of the density minimum

to control the numerical oscillations temporarily. Saint-Martine-Tillet and Oran [2], on the

other hand, used the local one-dimensional inviscid relations (LODI) developed by Poinsot

and Lele [3] to implement wall boundary conditions in a subsonic channel flow with ribs.

LODI has been developed by adopting the inviscid characteristic analysis to the Navier-

Stokes equations [3], and has gained much attention in the implementation of boundary

conditions. Although LODI maybe applicable to inflow, outflow and farfield boundaries [4],

it is in conflict with the physical conditions at the wall when the normal pressure gradient

at the wall is not small.

In this note, we discuss a different approach that uses the continuity and momentum

equations, rather than the inviscid characteristic analysis, to define boundary conditions at

the wall. Because the flow equations are used at the wall boundary, boundary conditions

defined in this way are consistent with the conditions used by interior points. We have also

found that this approach is more stable than LODI.
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2. FCT Algorithm

We begin with a one-dimensional convection equation with source terms:

o-± + 0v c1=-C9 + C2,

where v is the local convection velocity, and P is the pressure-type variable. The quantity

4) can be any flow variable, such as density p, momentum fluxe (pu, pv, pw), or energy E.

Values of cl and c2 can be constant or functions of convected variables. The application of

FCT to this type of equation consists of three steps [5, 6]:

(1) Central difference the convection terms:

4T=4o -1 ((O 40(o At

l (j!T +½ + (DO) - c_½ (42 -+ • -1 + clI- y(P 3 +½ - Pj_) + c2 At, (2)

At1

where c+½ = v,+½ At is the local Courant number. The quantity Ay is the grid size and

At is the time step. The subscript j is the center of a computational cell in the y direction.

Superscript o denotes the quantity at time step n - 1, and superscript T represents results

at the next time level without adding numerical diffusion. A uniform grid is assumed for

simplicity.

(2) Add numerical diffusion to stabilize the algorithm:

4j= + ÷( vf (- f)-o 1() -V1) . (3)

(3) Add antidiffusion to control the amount of numerical diffusion:

4)n - II)T) +/• , DTj ij1 Tf (4)

where quantities vf and and gf are the added diffusion and antidiffusion coefficients, which

are defined as
v:= 1+--,2

+± 2) (5)

The parameter D, controls the amount of antidiffusion [8]. D, = 1.0 corresponds to the

minimum global numerical diffusion [8] .
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A flux-limiting technique is used in the third stage to assure the monotonicity of the

solution by adjusting the amount of antidiffusion to avoid the generation of new maxima or

minima in the solution. If a time-step splitting method is used [6], E is evaluated at the time

level n + 1, for which an extra predictor step is needed to obtain E at this time level.

3. Implementing boundary conditions at a solid wall

j+1

J

G uardcells
IIS]I ' i-I ,--i- - '

S I I I
I I

For a solid wall boundary shown in the sketch above, we need to specify boundary condi-

tions for the following quantities:

Values at the wall surface: pi_- 2 _½ 2 and 1
., ,P j_½ jnd

e Values in the guard cells: -and -T_1

Here the subscript j - 1 denotes the values at the wall surface. The Courant number Ej__

is zero because of the no-slip conditions for a stationary wall, and the diffusion coefficient

v.1and the antidiffusion coefficient I, can be calculated from the equation (5). The

other quantities to be defined are the pressure at the wall, Pi_½, and the convected variables

in the guard cells, -1 and i-1. Because the difference between and 3- consists

only of the added numerical diffusion,they are specified similarly at boundaries. The choices
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for 1 in a three-dimensional flow are (p, pu, pv, pw, E), and the guard-cell values for the

momentum fluxes at a no-slip, stationary wall can be specified as

(pu)G = - (PU)L,
(PV)G = - (pv)L, (6)
(pw)G = - (pw)L,

where L is the cell adjacent to the wall, and G denotes the guard cell. The remaining

quantities to be defined are the pressure at the wall and the density and energy in guard

cells.

3.1. Evaluation of the wall pressure

We start with the continuity and the momentum equations at the wall:

a p W v _ 0, (7)
-8w w

and

(9) - (8)
where quantity v is the velocity normal to the wall, the subscript "W" denotes the wall

boundary, and pw is the density at the wall. Equation (8) is a simplified version of the

momentum equation at the wall for a compressible flow, assuming that the pressure gradient

in the normal direction is mainly balanced by the normal viscous diffusion.

If the temporal variation of the density at the wall is negligible, the variations of the normal

velocity v and the pressure gradient in the normal direction can be also ignored at the wall.

Thus, a zero-pressure gradient can be assumed at the wall, and a simple extrapolation from

the interior points can be used to obtain the wall pressure:

PW = PL. (9)

On the other hand, if the temporal variation of pw is not small, the normal velocity gradient

and the pressure gradient near the wall can not be ignored. This is the case, for example,

in a simulation of an unsteady flow or in a simulation of a steady-state flow with a rapidly
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changing density in the initial stage. Equation (9) could result in numerical instability be-

cause of the inconsistency between a zero-pressure gradient used at the wall and that used

by the interior points. Thus, physical conditions at the wall should be used to provide a

consistent evaluation. The available conditions are the continuity equation (7), the momen-

tum equation (8), and the given thermal conditions. The density at the wall, Pw, can be

first evaluated from the continuity equation (7), and the wall pressure Pw can be calcu-

lated afterwards from this newly calculated pw and the given thermal conditions, such as

Pw = Pw R Tw for an isothermal wall or OP/ = 0 for an adiabatic wall.

Following the LODI approach proposed by Poinsot and Lele [3] and assuming y = 0 is

the wall boundary, the equation calculating pw in their approach would be
aP1 +PWaV -_ a1 oP (10)
at aw w aw azw

where aw is the sound speed at the wall. The equation (10) is identical to the equation (7)

if _P w= 0. If OP 0, however, the LODI approach would give an unphysical pw, since

the continuity equation is not satisfied at the wall.

3.2. Density and energy in the guard cells

Since the density, velocity and the thermal conditions are known at the wall, the pressure

gradient and viscous diffusion can be evaluated from the flow variables at interior points and

those at the wall. Thus, the specification of the guard-cell values only affects the numerical

diffusion embedded in FCT at a stationary wall, as shown in equations (2)-(4).

If the wall is adiabatic and stationary, density and energy in the guard cells can be

calculated from the pressure gradient at the wall, such as

Op w1 p and

ay W R Tw Oy_ a

OE (11)aP
9y M/ /-Y1-I y 1w'

where _P can be calculated from either the momentum equation (8) or a given value if
ay W

5



it is known beforehand. It should be mentioned that the relationship between the energy

gradient and the pressure gradient given by equation (11) is also valid for other thermal

conditions, such as an isothermal wall.

For an isothermal wall, the density and the energy are extrapolated from the values at

the wall and those of the interior points, such as

PG = 2pW - PL (12)

EG = 2 Ew - EL,

where Ew = Pw/(-'- 1).

3.3. Interference between the guard-cell values and the flux limiter

The numerical diffusion in FCT includes a global and a local component [8]. The global

numerical diffusion is similar to viscous diffusion and its magnitude can be reduced to a

very small value by adjusting the parameter D, in equation (5). On the other hand, the

local numerical diffusion, introduced by activating the flux limiter, varies spatially and in-

termittently. Furthermore, its magnitude is large and can be significantly larger than that

of viscous diffusion. Guard-cell values may interfere with the flux limiter by activating the

flux limiter in some unwanted regions, or by introducing a contradictory activation of the

flux limiter for each variable.

Although the energy gradient given by equation (11) also applies at an isothermal wall, we

have found that the temperature profile has an inflexion point near the wall if this equation,

rather than the equation (12), is used to evaluate the energy in the guard cells. As we have

discussed above, the guard-cell values only affect numerical diffusion at a stationary wall, this

unwanted inflexion point should result from the interference between the guard-cell values

and the numerical diffusion, or more specifically the flux limiter, since the magnitude of

the local component of the numerical diffusion is significantly larger than that of the global

component. This was confirmed by the observation that turning off numerical diffusion from

the first cell near the wall removes this inflexion point. The global numerical diffusion was
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negligible in those tests, but the local numerical diffusion was significantly larger than that of

the viscous diffusion. This removal of numerical diffusion eliminates the interference between

the guard-cell values and the flux limiter by removing the dependency of numerical diffusion

on the guard-cell values. In this note, this process is done by enforcing

f._ 0,

(13)
S. o0,

and

2 (14)via= 0,

where j is the wall surface.

For an adiabatic wall, guard-cell values evaluated by equation (11) work well for most

conditions, but oscillations arise if the temporal variation of the density at the wall is very

large. This occurs, for instance, in a simulation of a compressible boundary layer, where

a solid plate is suddenly placed in a high-speed uniform flow. We have found that these

oscillations can be controlled by turning off numerical diffusion at the first cell near the wall.

Thus, the interference between the guard-cell values and the flux limiter is also responsible

for this numerical instability.

Besides turning off numerical diffusion at the first cell near the wall, the instability can

be controlled by using an initial condition that ensues a gradual transition, or by adding

numerical diffusion to the momentum equation (8) at an adiabatic wall. The viscosity in

equation (8) for the latter approach has a numerical portion,

lnum = 1 - DcIw Ay 2  (15)
6 At

where Dclw is the coefficient used for the momentum equation at the wall, Ay is the grid

size in the normal direction, and At is the time step. The total viscosity in equation (8) is

P = Pphys + Pnum, where Iphys is the physical viscosity. Equation (15) is very similar to the

numerical viscosity derived for the global numerical diffusion in FCT [8]. This numerical
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diffusion, however, is only applied to the momentum equation at the wall and is needed

only when temporal variations of the density are large. It can be gradually decreased when

temporal variations at the wall become small.

4. Numerical Results

A boundary-layer flow with a Mach number of 2.4 is chosen for testing the boundary

conditions at the wall. Thermal conditions of an adiabatic and an isothermal wall are tested.

Figure 1 shows the schematic diagram of the computational set-up, and the computation

parameters are summarized in Table 1. The quantity M.. is the free-stream Mach number,

and Reref is the Reynolds number per centimeter. The viscosity is calculated by Sutherland's

theory [10]. A flat plat with a length of 12 cm is placed at 1 cm away from the inflow plane.

A slip-wall boundary condition is used for the section between the inflow plane and the flat

plate. Since the Reynolds number at the end of the plate is approximately 4 x 10', the flow

is assumed laminar. The Courant number CFL = 0.22 and the coefficient D, = 0.999 is

used for all simulations. Results for two types of thermal conditions are given below.

Two approaches are tested for the simulation with an adiabatic wall. These approaches

include adding extra numerical diffusion to the momentum equation (8) and turning off

numerical diffusion at the first cell near the wall. Two types of DIw are used to test the effect

of the added numerical diffusion on the final results. One is a constant value, Ddw = 0.9,

which introduces a numerical viscosity roughly equal to seven times the physical viscosity

near the wall. Another one is a gradually deceasing numerical viscosity, which is done by

using DI w = min[ 1.0, 0.9 + (1 - 0.9) t/t,], in which t is the simulation time and t, is the

time when the temporal variation of the density near the wall becomes small. No global

numerical diffusion is added in equation (8) after the time t,.

Figure 2a shows both the theoretical predictions and experimental measurements of the

streamwise velocity extracted from reference [10] for an adiabatic, laminar boundary layer
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with A1J, = 2.4. The momentum thickness 62 is calculated as

62 = 0p•Uo 1 - U dy. (16)

Figures 2b-2d show the current numerical results of the streamwise velocity at x = 7 cm,

9 cm, and 11 cm, along with the theoretical prediction extracted from Ref. [10]. The Reynolds

numbers of these locations are roughly 2.4 x 105, 3.1 x 105, and 3.7 x 105, respectively. Figure

2b shows the result using a constant Dclw = 0.9, and Figure 2c shows the result of a de-

creasing numerical viscosity that uses DcW = min[ 1.0, 0.9 + (1 - 0.9) t/ite. Finally, Figure

2d presents the result when numerical diffusion is turned off at the first cell near the wall.

All the results agree well with the theoretical prediction. In addition, the temperature and

density profiles from these three simulations agree very well with each other, as shown in

Figures 3a and 3b. This good agreement indicates that numerical results are not sensitive

to the amount of numerical diffusion added to the momentum equation (8) in this super-

sonic boundary-layer flow. Furthermore, the temperature ratios, ,predicted by these

simulations are shown in Figure 4, along with the prediction given by Schlichting [10]

Tw,•T. (I1 + V/P-r-21M.2). (17)

The comparison is good in regions away from the leading edge. There are some differences,

however, in the leading edge region, where a much finer resolution is needed to resolve the

variations there.

Figures 5a to 5c are the streamwise velocity, temperature, and density at x = 9 cm for the

boundary layer with an isothermal wall, where the temperature is set to the ambient value.

The grid size in the y direction is half of that used in the adiabatic case because gradients

of the density and temperature near the wall are steeper than those with an adiabatic

wall. Numerical results obtained by turning off numerical diffusion at the first cell near the

wall agree very well with those obtained by using equation (12). The peak values of the

temperature and the density occur roughly at 2.862.
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4. Conclusions

The implementation of boundary conditions at the wall in FCT has been studied. We

have found that direct extrapolation from the interior points to evaluate the wall pressure

introduce instability when the temporal variation of the density at the wall is not small. In

this case, the continuity equation and the given thermal conditions at the wall can be used to

evaluate the wall pressure. Since viscous diffusion can be evaluated from the flow variables

at interior points and those at the wall, the guard-cell values only affect numerical diffusion

and the performance of the flux limiter near a stationary no-slip wall.

It is found that the interference between the guard-cell values and the flux limiter can

either affect the numerical results near the wall or introduce instability. Several approaches

have been proposed to resolve this problem. These approaches include turning off numerical

diffusion at the first cell near the wall to avoid the interference, or adding numerical diffusion

to the momentum equation at the wall when an adiabatic wall is considered. We have found

that these approaches work well for a compressible, supersonic boundary layer, and the

final results are not sensitive to the amount of numerical diffusion added in the momentum

equation at the wall in a supersonic boundary-layer flow.
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Free Stream Boundary

Inflow J utfl)ow

x Wall Boundary

Figure 1. The schematic diagram of a boundary-layer flow on a flat plate. Uo' is the
inflow velocity. Free stream boundary: zero-gradient conditions. Inflow boundary:
supersonic inflow conditions. Outflow boundary: supersonic outflow conditions. Wall
boundary: no-slip conditions.

Table 1

Parameters for boundary-layer flow simulations on a flat plate

M. ,x Ay Ymax L Reref Pr T. P.

2.4 0.1 cm 0.005 cm 0.5 cm 12 cm 34047 0.72 1447 K 0.41 atm
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Figure 2a. Streamwise velocity profiles in an adiabatic, laminar boundary layer with

M,,, = 2.41. Symbols: measurements after R.M. O'Donnell [11]. Solid line: compressible

theory prediction from Ref. [ 12]. Quantity 62 is the momentum thickness of the boundary

layer. Dashed line: incompressible theory prediction.
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Figure 2b. Streamwise velocity profiles at x = 7 cm, 9 cm, and d cm with the adiabatic

wall condition. Symbols: numerical results of Dow nnl 0.9. Solid line: compressible theory

prediction from Ref. [ 12]. Quantity 62 is the momentum thickness of the boundary layer.
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Figure 2c. Streamwise velocity profiles at x = 7 cm, 9 cm, and 11 cm with the adiabatic
wall condition. Symbols: numerical results of Dcw =-min[l.0, 0.9 + (1.0- 0.9)t/tel.
Solid line: compressible theory prediction from Ref. [12]. Quantity 62 is the momentum
thickness of the boundary layer.
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Figure 2d. Streamwise velocity profiles at x = 7 cm, 9 cm, and 11 cm with the adiabatic
wall condition. Symbols: numerical results of turning off numerical diffusion from the
first cell near the wall. Solid line: compressible theory prediction from Ref. [12].
Quantity 62 is the momentum thickness of the boundary layer.
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Figure 3a. Temperature profiles at x = 9 cm in an adiabatic, laminar boundary layer with
M•= 2.4. Solid line: tuning off numerical diffusion from the first cell near the wall.
Dashed line: adding numerical diffusion in momentum equation (8) with a decreasing
Dcw -min[l.0, 0.9 + (1.0-0.9)t/tj. Dotted line: adding numerical diffusion in

momentum equation (8) with a constant Dcjw - 0.9.
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Figure 3b. Density profiles at x 9 cm in an adiabatic, laminar boundary layer with
M. = 2.4. Solid line: tuning off numerical diffusion from the first cell near the wall.

Dashed line: adding numerical diffusion in momentum equation (8) with a decreasing
Dcw =min[l.0, 0.9+ (l.0-0.9)t/to]. Dotted line: adding numerical diffusion in

momentum equation (8) with a constant DjIw = 0.9.
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Figure 4a. Temperature distribution along the wall in an adiabatic, laminar boundary
layer with Mo = 2.4. Solid line: prediction from equation (17) [10]. Dashed line: adding
numerical diffusion in momentum equation (8) with a decreasing
Dcjw =min[1.0, 0.9+ (1.0-0.9)t/tc]. Dotted line: adding numerical diffusion in

momentum equation (8) with a constant DcjW = 0.9. Dashed-Dotted line: tuning off

numerical diffusion from the first cell near the wall.
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Figure 5a. Streamwise velocity profiles at x = 9 cm in an isothermal, laminar boundary
layer with M, = 2.4 (TW = T.). Solid line: tuning off numerical diffusion from the first
cell near the wall. Dashed line: using equation (12).
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Figure 5b. Temperature profiles at x = 9 cm in an isothermal, laminar boundary layer
with Mo = 2.4 (Tw = Tm). Solid line: tuning off numerical diffusion from the first cell
near the wall. Dashed line: using equation (12).
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Figure 5c. Density profiles at x = 9 cm in an isothermal, laminar boundary layer with
M, = 2.4 ( TW = T ). Solid line: tuning off numerical diffusion from the first cell near
the wall. Dashed line: using equation (12).
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